7.7 SIGNALS 201

¢ Signals originating from a process in user mode, such as when a process wishes
to receive an alarm signal after a period of time, or when processes send
arbitrary signals to each other with the kil/ system call; ;

 Signals related to terminal interaction such as when a user hangs up a terminal
(or the “carrier” signal drops on such a line for any reason), or when a user
presses the “break” or “delete” keys on a terminal keyboard;

e Signals for tracing execution of a process.

The discussion in this and in following chapters explains the circumstances under
which signals of the various classes are used.

The treatment of signals has several facets, namely how the kernel sends a
signal to a process, how the process handles a signal, and how a process controls its
reaction to signals. To send a signal to a process, the kernel sets a bit in the signal
field of the process table entry, corresponding to the type of signal received. If the
process is asleep at an interruptible priority, the kernel awakens it. The job of the
sender (process or kernel) is complete. A process can remember different types of
signals, but it has no memory of how many signals it receives of a particular type.
For example, if a process receives a hangup signal and a kill signal, it sets the
appropriate bits in the process table signal field, but it cannot tell how many
instances of the signals it receives.

The kernel checks for receipt of a signal when a process is about to return from
kernel mode to user mode and when it enters or leaves the sleep state at a suitably
low scheduling priority (see Figure 7.6). The kernel handles signals only when a
process returns from kernel mode to user mode. Thus, a signal does not have an
instant effect on a process running in kernel mode. If a process is running in user
mode, and the kernel handles an interrupt that causes a signal to be sent to the
process, the kernel will recognize and handle the signal when it returns from the
interrupt. Thus, a process never executes in user mode before handling outstanding
signals.

Figure 7.7 shows the algorithm the kernel executes to determine if a process
received a signal. The case for “‘death of child” signals will be treated later in the
chapter. As will be seen, a process can choose to ignore signals with the signal
system call. In the algorithm issig, the kernel simply turns off the signal indication
for signals the process wants to ignore but notes the existence of signals it does not
ignore.

1. The use of signals in some circumstances uncovers errors in programs that do not check for failure of
system calls (private communication from D. Ritchie).

202 PROCESS CONTROL

User Running

Check
. and
_ . »- Handle
g VLt Signals
sys call, - “return
interrupt, interrupt return to user
interrupt return
Kernel
Running
exit preempt
Zombie T\ ..s'f;reempted
reschedul TTeell Check
sleep process _ _ _____ - —IZz=. for
- Signals
. Ready to Run
3 I
4 wakeup n Memory
enough mem
Asleep gh
In
Memo Created
swap| pwap
swap out in
out
not enough mem
(swapping system only)
6 wakeup
Sleep, Swapped Ready to Run, Swapped

Figure 7.6. Checking and Handling Signals in the Process State Diagram

1.7 SIGNALS 203

algorithm issig /* test for receipt of signals */

input: none

output: true, if process received signals that it does not ignore
false otherwise

{

while (received signal field in process table entry not 0)
{

find a signal number sent to the process;

if (signal is death of child)

{

if (ignoring death of child signals)
free process table entries of zombie children;
else if (catching death of child signals)
return(true);
)
else if (not ignoring signal)
return(true);
turn off signal bit in received signal field in process table;

return(false);

Figure 7.7. Algorithm for Recognizing Signals

7.2.1 Handling Signals

The kernel handles signals in the context of theprocess that receives them so a
process must run to handle signals. There are three cases for handling signals: the
process exits on receipt of the signal, it ignores the signal, or it executes a
particular (user) function on receipt of the signal. The default action is to call exit
in kernel mode, but a process can specify special action to take on receipt of certain
signals with the signal system call.

The syntax for the signal system call is

oldfunction = signal(signum, function);

where signum is the signal number the process is specifying the action for, function
is the address of the (user) function the process wants to invoke on receipt of the
signal, and the return value oldfunction was the value of function in the most
recently specified call to signal for signum. The process can pass the values 1 or 0
instead of a function address: The process will ignore future occurrences of the
signal if the parameter value is 1 (Section 7.4 deals with the special case for
ignoring the “death of child” signal) and exit in the kernel on receipt of the signal
if its value is O (the default value). The u area contains an array of signal-handler
fields, one for each signal defined in the system. The kernel stores the address of
the user function in the field that corresponds to the signal number. Specification

204 PROCESS CONTROL

algorithm psig /* handle signals after recognizing their exssience */
input: none
output: none
{

get signal number set in process table entry;

clear signal number in process table entry;

if (user had called signal sys call to ignore this signal)

return; /* done */
if (user specified function to handle the signal)

get user virtual address of signal catcher stored in u area;
/* the next statement has undesirable side-effects */
clear u area entry that stored address of signal catcher,
modify user level context:
artificially create user stack frame to mimic
call to signal catcher function;
modify system level context:
write address of signal catcher into program
counter field of user saved register context;
return;

)

if (signal is type that system should dump core image of process)

create file named "core” in current directory;
write contents of user level context to file "core”;

}

invoke exit algorithm immediately;

Figure 7.8. Algorithm for Handling Signals

to handle signals of one type has no effect on handling signals of other types.

When handling a signal (Figure 7.8) the kernel determines the signal type and
turns off the appropriate signal bit in the process table entry, set when the process
received the signal. If the signal handling function is set to its default value, the
kernel will dump a “core” image of the process (see exercise 7.7) for certain types
of signals before exiting. The dump is a convenience to programmers, allowing
them to ascertain its causes and, thereby, to debug their programs. The kernel
dumps core for signals that imply something is wrong with a process, such as when
a process executes an illegal instruction or when it accesses an address outside its
virtual address space. But the kernel does not dump core for signals that do not
imply a program error. For instance, receipt of an interrupt signal, sent when a
user hits the “delete” or “break” key on a terminal, implies that the user wants to
terminate a process prematurely, and receipt of a hangup signal implies that the
login terminal is no longer “connected.” These signals do not imply that anything

1.7 SIGNALS 205

is wrong with the process. The quit signal, however, induces a core dump even
though it is initiated outside the running process. Usually sent by typing the
control-vertical-bar character at the terminal, it allows the programmer to obtain a
core dump of a running process, useful for one that is in an infinite loop.

When a process receives a signal that it had previously decided to ignore, it
continues as if the signal had never occurred. Because the kernel does not reset the
field in the u area that shows the signal is ignored, the process will ignore the signal
if it happens again, too. If a process receives a signal that it had previously decided
to catch, it executes the user specified signal handling function immediately when it
returns to user mode, after the kernel does the following steps.

1. The kernel accesses the user saved register context, finding the program
counter and stack pointer that it had saved for return to the user process.

2. It clears the signal handler field in the u area, setting it to the default state.

3. The kernel creates a new stack frame on the user stack, writing in the values
of the program counter and stack pointer it had retrieved from the user saved
register context and allocating new space, if necessary. The user stack looks
as if the process had called a user-level function (the signal catcher) at the
point where it had made the system call or where the kernel had interrupted
it (before recognition of the signal).

4. The kernel changes the user saved register context: It resets the value for the
program counter to the address of the signal catcher function and sets the
value for the stack pointer to account for the growth of the user stack.

After returning from the kernel to user mode, the process will thus execute the
signal handling function; when it returns from the signal handling function, it
returns to the place in the user code where the system call or interrupt originally
occurred, mimicking a return from the system call or interrupt.

For example, Figure 7.9 contains a program that catches interrupt signals
(SIGINT) and sends itself an interrupt signal (the result of the kill call here), and
Figure 7.10 contains relevant parts of a disassembly of the load module on a VAX
11/780. When the system executes the process, the call to the kill library routine
comes from address (hexadecimal) ee, and the library routine executes the chmk
(change mode to kernel) instruction at address 10a to call the kill system call. The
return address from the system call is 10c. In executing the system call, the kernel
sends an interrupt signal to the process. The kernel notices the interrupt signal
when it is about to return to user mode, removes the address 10c from the user
saved register context, and places it on the user stack. The kernel takes the address
of the function catcher, 104, and puts it into the user saved register context.
Figure 7.11 illustrates the states of the user stack and saved register context.

Several anomalies exist in the algorithm described here for the treatment of
signals. First and most important, when a process handles a signal but before it
returns to user mode, the kernel clears the field in the u area that contains the
address of the user signal handling function. If the process wants to handle the
signal again, it must call the signal system call again. This has unfortunate

PROCESS CONTROL

#include <signal h>
main()

extern catcher();

signal (SIGINT, catcher);
kill(0, SIGINT):

catcher()

)

Figure 7.9. Source Code for a Program that Catches Signals

*#** VAX DISASSEMBLER ***+

_main(

ed:
¢6: pushab 0x18(pc)
ec: pushl $0x2

next line calls signal
ee: calls $0x2,0x23(pc)
f5: pushl $0x2
f7: clrl ~—(sp)

next line calls kill library routine
f9: calls $0x2,0x8(pc)

100: ret

101: halt

102: halt

103: halt
_catcher(

104:

106: ret

107: halt
_killQ

108:

next line traps into kernel
10a: chmk $0x25
10c: bgequ 0x6 <0x114>
10e: jmp 0Ox14(pc)
114: clrl r0
116: ret

Figure 7.10. Disassembly of Program that Catches Signals

SIGNALS 207
Before After
New Frame of
Top of User Stack Calling Sequence
Ret Addr (10c)
User Stack User Stack
Prior to Prior to
Receipt of Signal Receipt of Signal

User Stack User Stack
Ret Addrin .} Ret Addr in
Process (10c)’ Process (104)

User Saved User Saved
Reg Context Reg Context

Kernel Context Layer 1
Register Save Area

Kernel Context Layer 1
Register Save Area

Figure 7.11. User Stack and Kernel Save Area Before and After Receipt of Signal

ramifications: A race condition results because a second instance of the signal may
arrive before the process has a chance to invoke the system call. Since the process
is executing in user mode, the kernel could do a context switch, increasing the
chance that the process will receive the signal before resetting the signal catcher.
The program in Figure 7.12 illustrates the race condition. The process calls the
signal system call to arrange to catch interrupt signals and execute the function
sigcatcher. 1t then creates a child process, invokes the nice system call to lower its
scheduling priority relative to the child process (see Chapter 8), and goes into an
infinite loop. The child process suspends execution for 5 seconds to give the parent
process time to execute the nice system call and lower its priority. The child
process then goes into a loop, sending an interrupt signal (via kill) to the parent
process during each iteration. If the kill returns because of an error, probably
because the parent process no longer exists, the child process exifs. The idea is
that the parent process should invoke the signal catcher every time it receives an
interrupt signal. The signal catcher prints a message and calls signal again to

208 PROCESS CONTROL

#include <signal.h>
sigcatcher()
{
printf(“PID %d caught one\n”, getpid()); /* print proc id */
signal (SIGINT, sigcatcher);
}
main()
{
int ppid;
signal (SIGINT, sigcatcher);
if (fork() == 0)
{
/* give enough time for both procs to set up */
sleep(5); /* 1ib function to delay 5 secs */
ppid = getppid(); /* get parent id */
for (;;)
if (kill(ppid, SIGINT) == —1)
exit();
}
/* lower priority, greater chance of exhibiting race */
nice(10);
for (;;)
)

Figure 7.12. Program Demonstrating Race Condition in Catching Signals

catch the next occurrence of an interrupt signal, and the parent continues to
execute in the infinite loop.

It is possible for the following sequence of events to occur, however.

1. The child process sends an interrupt signal to the parent process.

2. The parent process catches the signal and calls the signal catcher, but the
kernel preempts the process and switches context before it executes the signal
system call again.

3. The child process executes again and sends another interrupt signal to the
parent process.

4. The parent process receives the second interrupt signal, but it has not made
arrangements to catch the signal. When it resumes execution, it exits.

The program was written to encourage such behavior, since invocation of the nice
system call by the parent process induces the kernel to schedule the child process

1.7 SIGNALS 209

more frequently. However, it is indeterminate when this result will occur.

According to Ritchie (private communication), signals were designed as events
that are fatal or ignored, not necessarily handled, and hence the race condition was
not fixed in early releases. However, it poses a serious problem to programs that
want to catch signals. The problem, would be solved if the signal field were not
cleared on receipt of the signal. But such a solution could result in a new problem:
If signals keep arriving and are caught, the user stack could grow out of bounds
because of the nested calls to the signal catcher. Alternatively, the kernel could
reset the value of the signal-handling function to ignore signals of that type until
the user again specifies what to do for such signals. Such a solution implies a loss
of information, because the process has no way of knowing how many signals it
receives. However, the loss of information is no more severe than it is for the case
where the process receives many signals of one type before it has a chance to
handle them. Finally, the BSD system allows a process to block and unblock
receipt of signals with a new system call; when a process unblocks signals, the
kernel sends pending signals that had been blocked to the process. When a process
receives a signal, the kernel automatically blocks further receipt of the signal until
the signal handler completes. This is analogous to how the kernel reacts to
hardware interrupts: it blocks report of new interrupts while it handles previous
interrupts.

A second anomaly in the treatment of signals concerns catching signals that
occur while the process is in a system call, sleeping at an interruptible priority.
The signal causes the process to take a longjmp out of its sleep, return to user
mode, and call the signal handler. When the signal handler returns, the process
appears to return from the system call with an error indicating that the system call
was interrupted. The user can check for the error return and restart the system
call, but it would sometimes be more convenient if the kernel automatically
restarted the system call, as is done in the BSD system.

A third anomaly exists for the case where the process ignores a signal. If the
signal arrives while the process is asleep at an interruptible sleep priority level, the
process will wake up but will not do a longjmp. That is, the kernel realizes that
the process ignores the signal only after waking it up and running it. A more
consistent policy would be to leave the process asleep. However, the kernel stores
the signal function address in the u area, and the u area may not be accessible
when the signal is sent to the process. A solution to this problem would be to store
the signal function address in the process table entry, where the kernel could check
whether it should awaken the process on receipt of the signal. Alternatively, the
process could immediately go back to sleep in the sleep algorithm, if it discovers
that it should not have awakened. Nevertheless, user processes never realize that
the process woke up, because the kernel encloses entry to the sleep algorithm in a
“while” loop (recall from Chapter 2), putting the process back to sleep if the sleep
event did not really occur.

Finally, the kernel does not treat “death of child” signals the same as other
signals. In particular, when the process recognizes that it has received a “death of

210 PROCESS CONTROL

child” signal, it turns off the notification of the signal in the process table entry
signal field and in the default case, it acts as if no signal had been sent. The effect
of a “death of child” signal is to wake up a process sleeping at interruptible
priority. If the process catches “death of child” signals, it invokes the user handler
as it does for other signals. The operations that the kernel does if the process
ignores “death of child” signals will be discussed in Section 7.4. Finally, if a
process invokes the signal system call with ““death of child” parameter, the kernel
sends the calling process a “death of child” signal if it has child processes in the
zombie state. Section 7.4 discusses the rationale for calling signal with the “death
of child” parameter.

7.2.2 Process Groups

Although processes on a UNIX system are identified by a unique 1D number, the
system must sometimes identify processes by “group.” For instance, processes with
a common ancestor process that is a login shell are generally related, and therefore
all such processes receive signals when a user hits the “delete” or “break” key or
when the terminal line hangs up. The kernel uses the process group ID to identify
groups of related processes that should receive a common signal for certain events.
It saves the group ID in the process table; processes in the same process group have
identical group ID’s.

The setpgrp system call initializes the process group number of a process and
sets it equal to the value of its process ID. The syntax for the system call is

grp = setpgrp(;
where grp is the new process group number. A child retains the process group

number of its parent during fork. Setpgrp also has important ramifications for
setting up the control terminal of a process (see Section 10.3.5).

7.2.3 Sending Signals from Processes
Processes use the kill system call to send signals. The syntax for the system call is
kill(pid, signum)

where pid identifies the set of processes to receive the signal, and signum is the
signal nun.rsr being sent. The following list shows the correspondence between
values of pid and sets of processes.

o If pid is a positive integer, the kernel sends the signal to the process with
process ID pid.

o If pid is 0, the kernel sends the signal to all processes in the sender’s process
group.

e If pid is —1, the kernel sends the signal to all processes whose real user 1D
equals the effective user ID of the sender (Section 7.6 will define real and

17 SIGNALS 211

effective user ID’s). If the sending process has effective user ID of superuser,
the kernel sends the signal to all processes except processes 0 and 1.

o If pid is a negative integer but not —I1, the kernel sends the signal to all
processes in the process group equal to the absolute value of pid.

In all cases, if the sending process does not have effective user ID of superuser, or
its real or effective user ID do not match the real or effective user ID of the
receiving process, kill fails.

#include <signal.h>
main()

{

register int i;

setpgrp();
for (=0; i<10; i++)
{
if (fork() == 0)
{
/* child proc */
ifG&1)
setpgrpO;
printf(“pid = %d pgrp = %d\n”, getpid 0, getpgrp();
pause(); /* sys call to suspend execution */
}
} 3
kill(0, SIGINT);

Figure 7.13. Sample Use of Setpgrp

In the program-in Figure 7.13, the process resets its process group number and
creates 10 child processes. When created, each child process has the same process
group number as the parent process, but processes created during odd iterations of
the loop reset their process group number. The system calls getpid and getpgrp
return the process ID and the group ID of the executing process, and the pause
system call suspencs execution of the process until it receives a signal. Finally, the
parent executes the kill system call and sends an interrupt signal to all processes in
its process group. The kernel sends the signal to the 5 “even” processes that did
not reset their process group, but the 5 “odd” processes continue to loop.

212 PROCESS CONTROL

7.3 PROCESS TERMINATION

Processes on a UNIX system terminate by executing the exit system call. An
exiting process enters the zombie state (recall Figure 6.1), relinquishes its
resources, and dismantles its context except for its slot in the process table. The
syntax for the call is

exit(status);

where the value of status is returned to the parent process for its examination.
Processes may call exit explicitly or impli: itly at the end of a program: the startup
routine linked with all C programs calls exit when the program returns from the
main function, the entry point of all programs. Alternatively, the kernel may
invoke exit internally for a process on receipt of uncaught signals as discussed
above. If so, the value of status is the signal number.

The system imposes no time limit on the execution of a process, and processes
frequently exist for a long time. For instance, processes 0 (the swapper) and 1
(init) exist throughout the lifetime of a system. Other examples are getry
processes, which monitor a terminal line, waiting for a user to log in, and special-
purpose administrative processes.

algorithm exit
input: return code for parent process
output: none
{
ignore all signals;
if (process group leader with associated control terminal)
{
send hangup signal to all members of process group;
reset process group for all members to 0;
} ‘
close all open files (internal version of algorithm close);
release current directory (algorithm iput);
release current (changed) root, if exists (algorithm iput);
free regions, memory associated with process (algorithm freereg);
write accounting record;
make process state zombie
assign parent process ID of all child processes to be init process (1);
if any children were zombie, send death of child signal to init;
send death of child signal to parent process;
context switch;

Figure 7.14. Algorithm for Exit

1.7 PROCESS TERMINATION 213

Figure 7.14 shows the algorithm for exit. The kernel first disables signal
handling for the process, because it no longer makes any sense to handle signals. If
the exiting process is a'process group leader associated with a control terminal (see
Section 10.3.5), the kernel assumes the user is not doing any useful work and sends
a “hangup” signal to all processes in the process group. Thus, if a user types *“end
of file” (control-d character) in the login shell while some processes associated with
the terminal are still alive, the exiting process will send them a hangup signal. The
kernel also resets the process group number to O for processes in the process group,
because it is possible that another process will later get the process ID of the
process that just exited and that it too will be a process group leader. Processes
that belonged to the old process group will not belong to the later process group.
The kernel then goes through the open file descriptors, closing each one internally
with algorithm close, and releases the inodes it had accessed for the current
directory and changed root (if it exists) via algorithm ipuz.

The kernel now releases all user memory by freeing the appropriate regions with
algorithm detachreg and changes the process state to zombie. It saves the exit
status code and the accumulated user and kernel execution time of the process and
its descendants in the process table. The description of wait in Section 7.4 shows
how a process gets the timing data for descendant processes. The kernel also writes
an accounting record to a global accounting file, containing various run-time
statistics such as user ID, CPU and memory usage, and amount of 1/0 for the
process. User-level programs can later read the accounting file to gather various
statistics, useful for performance monitoring and customer billing. Finally, the
kernel disconnects the process from the process tree by making process 1 (inir)
adopt all its child processes. That is, process 1 becomes the legal parent of all live
children that the exiting process had created. If any of the children are zombie,
the exiting process sends init a “death of child” signal so that init can remove them
from the process table (see Section 7.9); the exiting process sends its parent a
“death of child” signal, too. In the typical scenario, the parent process executes a
wait system call to synchronize with the exiting child. The now-zombie process
does a context switch so that the kernel can schedule another process to execute;
the kernel never schedules a zombie process to execute.

In the program in Figure 7.15, a process creates a child process, which prints its
PID and executes the pause system call, suspending itself until it receives a signal.
The parent prints the child’s PID and exits, returning the child’s PID as its status
code. If the exit call were not present, the startup routine calls exit when the
process returns from main. The child process spawned by the parent lives on until
it receives a signal, even though the parent process is gone.

7.4 AWAITING PROCESS TERMINATION

A process can synchronize its execution with the termination of a child process by
executmg the wait system call. The syntax for the system call is

214 PROCESS CONTROL

main()

{

int child;

if ((child = fark()) == 0)
{
printf("child PID %d\n", getpid());
pausc(); /* suspend execution until signal */
}
/* parent */
printf("child PID %d\n", child);
exit(child);

Figure 7.15. Example of Exit

pid = wait(stat_addr);

where pid is the process ID of the zombie child, and star addr is the address in
user space of an integer that will contain the exit status code of the child.

Figure 7.16 shows the algorithm for wait. The kernel searches for a zombie
child of the process and, if there are no children, returns an error. If it finds a
zombie child, it extracts the PID number and the parameter supplied to the child’s
exit call and returns those values from the system call. An exiting process can
thus specify various return codes to give the reason it exited, but many programs
do not consistently set it in practice. The kernel adds the accumulated time the
child process executed in user and in kernel mode to the appropriate fields in the
parent process ¥ area and, finally, releases the process table slot formerly dccupied
by the zombie process. The slot is now available for a new process.

If the process executing wait has child processes but none are zombie, it sleeps
at an interruptible priority until the arrival of a signal. The kernel does not contain
an explicit wake up call for a process sleeping in wait: such processes only wake up
on receipt of signals. For any signal except “death of child,” the process will react
as described above. However, if the signal is “death of child,” the process may
respond differently.

e In the default case, it will wake up from its sleep in wait, and sleep invokes
algorithm issig to check for signals. Issig (Figure 7.7) recognizes the special
case of ‘“death of child” signals and returns “false.” Consequently, the kernel
does not “long jump” from cleep, but returns to wait. The kernel will restart
the wait loop, find a zombie child — at least one is guaranteed to exist, release
the child’s process table slot, and return from the wait system call.

o If the process catches “death of child” signals, the kernel arranges to call the
user signal-handler routine, as it does for other signals.

7.7 AWAITING PROCESS TERMINATION 215

algorithm wait
input: address of variable to store status of exiting process
output: child ID, child exit code
{
if (waiting process has no child processes)
return(error);

for (;;) /* loop until return from inside loop */
if (waiting process has zombie child)

pick arbitrary zombie child;
add child CPU usage to parent;
free child process table entry;
return(child ID, child exit code);
)
if (process has no children)
return error;
sleep at interruptible priority (event child process exits);

Figure 7.16. Algorithm for Wait

o If the process ignores “death of child” signals, the kernel restarts the wait loop,
frees the process table slots of zombie children, and searches for more children.

For example, a user gets different results when invoking the program in Figure
7.17 with or without a parameter. Consider first the case where a user invokes the
program without a parameter (argc is 1, the program name). The (parent) process
creates 15 child processes that eventually exit with return code i, the value of the
loop variable when the child was created. The kernel, executing wait for the
parent, finds a zombie child process and returns its process ID and exit code. It is
indeterminate which child process it finds. The C library code for the exit system
call stores the exit code in bits 8 to 15 of ret_code and returns the child process ID
for the wait call. Thus ret_code equals 256*i, depending on the value of i for the
child process, and ret_val equals the value of the child process ID.

If a user invokes the above program with a parameter (argec > 1), the (parent)
process calls signal to ignore “death of child” signals. Assume the parent process
sleeps in wait before any child processes exiz: When a child process exits, it sends
a “death of child” signal to the parent process; the parent process wakes up because
its sleep in wair is at an interruptible priority. When the parent process eventually
runs, it finds that the outstanding signal was for “death of child”; but because it
ignores “death of child” signals, the kernel removes the entry of the zombie child
from the process table and continues executing wait as if no signal had happened.

216 PROCESS CONTROL

#include <signal.h>
main(argc, argv)

int argc;

char *argvl];

int i, ret_val, ret_code;

if (argc >=1)
signal(SIGCLD, SIG_IGN); /* ignore death of children */
for i=0; i<15 i++)
if (fork() == 0)
{
/* child proc here */
printf(“child proc %x\n”, getpid());
exit(i);
)
ret_val = wait(&ret_code);
printf(“wait ret_val %x ret_code %x\n", ret_val, ret_code);

Figure 7.17. Example of Wait and Ignoring Death of Child Signal

The kernel does the above procedure each time the parent receives a “death of
child” signal, until it finally goes through the wait loop and finds that the parent
has no children. The wait system call then returns a —1. The difference between
the two invocations of the program is that the parent process waits for the
termination of any child process in the first case but waits for the termination of all
child processes in the second case.

Older versions of the UNIX system implemented the exit and wait system calls
without the “death of child” signal. Instead of sending a ‘“death of child” signal,
exit would wake up the parent process. If the parent process was sleeping in the
wait system call, it would wake up, find a zombie child, and return. If it was not
sleeping in the wait system call, the wake up would have no effect; it would find a
zombie child on its next wait call. Similarly, the init process would sleep in wait,
and exiting processes would wake it up if it were to adopt new zombie processes.

The problem with that implementation is that it is impossible to clean up
zombie processes unless the parent executes wait. If a process creates many
children but never executes wait, the process table will become cluttered with
zombie children when the children exit. For example, consider the dispatcher
program in Figure 7.18. The process reads its standard input file until it
encounters the end of file, creating a child process for each read. However, the
parent process does not wait for the termination of the child process, because it
wants to dispatch processes as fast as possible and the child process may take too
long until it exits. If the parent makes the signal call to ignore “death of child”

1.7 AWAITING PROCESS TERMINATION 217

#include <signal.h>

main(argc, argv)

{
char bufl256];

if (argc !=1)
signal (SIGCLD, SIG_IGN); /* ignore death of children */
while (read(0, buf, 256))
if (fork() == Q)
{
/* child proc here typically does something with buf */
exit(0);

}

Figure 7.18. Example Depicting the Reason for Death of Child Signal

signals, the kernel will release the entries for the zombie processes automatically.
Otherwise, zombie processes would eventually fill the maximum allowed slots of the
process table.

7.5 INVOKING OTHER PROGRAMS

The exec system call invokes another program, overlaying the memory space of a
process with a copy of an executable file. The contents of the user-level context
that existed before the exec call are no longer accessible afterward except for exec’s
parameters, which the kernel copies from the old address space to the new address
space. The syntax for the system call is

execve(filename, argv, envp)

where filename is the name of the executable file being invoked, argv is a pointer to
an array of character pointers that are parameters to the executable program, and
envp is a pointer to an array of character pointers that are the environment of the
executed program. There are several library functions that call the exec system
call such as execl, execv, execle, and so on. All call execve eventually, hence it is
used here to specify the exec system call. When a program uses command line
parameters, as in

main(argc, argv)

the array argv is a copy of the argv parameter to exec. The character strings in
the environment are of the form “name=value” and may contain useful information
for programs, such as the user’s home directory and a path of directories to search
for executable programs. Processes can access their environment via the global

218 PROCESS CONTROL

algorithm exec
input: (1) file name

(2) parameter list

(3) environment variables list
output: none

get file inode (algorithm namei);
verify file executable, user has permission to execute;
read file headers, check that it is a load module;
copy exec parameters from old address space to system space;
for (every region attached to process)
detach all old regions (algorithm detach);
for (every region specified in load module)
{

allocate new regions (algorithm allocreg);
attach the regions (algorithm attachreg);
load region into memory if appropriate (algorithm loadreg);

copy exec parameters into new user stack region;
special processing for setuid programs, tracing;
initialize user register save area for return to user mode;
release inode of file (algorithm iput);

Figure 7.19. Algorithm for Exec

variable environ, initialized by the C startup routine.

Figure 7.19 shows the algorithm for the exec system call. Exec first accesses
the file via algorithm namei to determine if it is an executable, regular
(nondirectory) file and to determine if the user has permission to execute the
program. The kernel then reads the file header to determine the layout of the
executable file.

Figure 7.20 shows the logical format of an executable file as it exists in the file
system, typically generated by the assembler or loader. It consists of four parts:

1. The primary header describes how many sections are in the file, the start
address for process execution, and the magic number, which gives the type of
the executable file.

2. Section headers describe each section in the file, giving the section size, the
virtual addresses the section should occupy when running in the system, and
other information.

3. The sections contain the “data,” such as text, that are initially ioaded in the
process address space.

4. Miscellaneous sections may contain symbol tables and other data, useful for
debugging.

11 INVOKING OTHER PROGRAMS 219

Magic Number
Primary Header | Number of Sections
Initial Register Values

Section Type

Section 1 Header Section Size
Virtual Address

Section Type

Section 2 Header Section Size
. Virtual Address

: Section Type
Section n Header Section Size

Virtual Address
Section 1 Data (e.g. text)
Section 2 Data
Section n Dadta

Other Information

Figure 7.20. Image of an Executable File

Specific formats have evolved through the years, but all executable files have
contained a primary header with a magic number.

The magic number is a short integer, which identifies the file as a load module
and enables the kernel to distinguish run-time characteristics about it. For
example, use of particular magic numbers on a PDP 11/70 informed the kernel
that processes could use up to 128K bytes of memory instead of 64K bytes,” but the
magic number still plays an important role in paging systems, as will be seen in
Chapter 9.

2 The values of the magic numbers were the values of PDP 11 jump instructions; original versions of
the system executed the instructions, and the program counter jumped to various locations depending
on the size of the header and on the type of executable file being executed! This feature was no
longer in use by the time the system was written in C.

220 PROCESS CONTROL

At this point, the kernel has accessed the inode for the executable file and has
verified that it can execute it. It is about to free the memory resources that
currently form the user-level context of the process. But since the parameters to
the new program are contained in the memory space about to be freed, the kernel
first copies the arguments from the old memory space to a temporary buffer until it
attaches the regions for the new memory space.

Because the parameters to exec are user addresses of arrays of character strings,
the kernel copies the address of the character string and then the character string
to kernel space for each character string. It may choose several places to store the
character strings, dependent on the implementation. The more popular places are
the kernel stack (a local array in a kernel routine), unallocated areas (such as
pages) of memory that can be borrowed temporarily, or secondary memory such as
a swapping device.

The simplest implementation for copying parameters to the new user-level
context is to use the kernel stack. But because system configurations usually
impose a limit on the size of the kernel stack and because the exec parameters can
have arbitrary length, the scheme must be combined with another. Of the other
choices, implementations use the fastest method. If it is easy to allocate pages of
memory, such a method is preferable since access to primary memory is faster than
access to secondary memory (such as a swapping device).

After copying the exec parameters to a holding place in the kernel, the kernel
detaches the old regions of the process using algorithm detachreg. Special
treatment for text regions will be discussed later in this section. At this point the
process has no user-level context, so any errors that it incurs from now on result in
its termination, caused by a signal. Such errors include running out of space in the
kernel region table, attempting to load a program whose size exceeds the system
limit, attempting to load a program whose region addresses overlap, and others.
The kernel allocates and attaches regions for text and data, loading the contents of
the executable file into main memory (algorithms allocreg, attachreg, and
loadreg). The data region of a process is (initially) divided into two parts: data
initialized at compile time and data not initialized at compile time (“bss’). The
initial allocation and attachment of the data region is for the initialized data. The
kernel then increases the size of the data rcgion using algorithm growreg for the
“bss” data, and initializes the value of the memory to 0. Finally, it allocates a
region for the process stack, attaches it to the process, and allocates memory to
store the exec parameters. If the kernel has saved the exec parameters in memory
pages, it can use those pages for the stack. Otherwise, it copies the exec
parameters to the user stack.

The kernel clears the addresses of user signal catchers from the u area, because
those addresses are meaningless in the new user-leve' context. Signals that are
ignored remain ignored in the new context. Then the kernel sets the saved register
context for user mode, specifically setting the initial user stack pointer and program
counter: The loader had written the initial program counter in the file header. The
kernel takes special action for setuid programs and for process tracing, covered in

1.7 INVOKING OTHER PROGRAMS 221

the next section and in Chapter 11, respectively. Finally, it invokes algorithm iput,
releasing the inode that was originally allocated in the namei algorithm at the
beginning of exec. The use of namei and iput in exec corresponds to their use in
opening and closing a file; the state of a file during the exec call resembles that of
an open file except for the absence of a file table entry. When the process
“returns” from the exec system call, it executes the code of the new program.
However, it is the same process it was before the exec; its process ID number does
not change, nor does its position in the process hierarchy. Only the user-level
context changes.

main(
{
int status;
if (fork() == 0)
execl(“/bin/date”, “date”, 0);
wait(&status);

Figure 7.21. Use of Exec

For example, the program in Figure 7.21 creates a child process that invokes
the exec system call. Immediately after the parent and child processes return from
fork, they execute independent copies of the program. When the child process is
about to invoke the exec call, its text region consists of the instructions for the
program, its data region consists of the strings */bin/date” and “date”, and its
stack contains the stack frames the process pushed to get to the exec call. The
kernel finds the file “/bin/date” in the file system, finds that all users can execute
it, and determines that it is an executable load module. By convention, the first
parameter of the argument list argv to exec is the (last component of the) path
name of the executable file. The process thus has access to the program name at
user-level, sometimes a useful feature.’> The kernel then copies the strings
“/bin/date” and “date” to an internal holding area and frees the text, data, and
stack regions occupied by the process. It allocates new text, data, and stack regions
for the process, copies the instruction section of the file “/bin/date” into the text
region, and copies the data section of the file into the data region. The kernel
reconstructs the original parameter list (here, the character string “date™) and puts
it in the stack region. After the exec call, the child process no longer executes the

3. On System V for instance, the standard programs for renaming a file (mv), copying 2 file (cp), and
linking a file (In) are one executable file because they execute similar code. The process looks at the
name the user used to invoke it to determine what it shouid do.

222 PROCESS CONTROL

old program but executes the program “date”: When the “date” program
completes, the parent process receives its exit status from the wait call.

Until now, we have assumed that process text and data occupy separate sections
of an executable program and, hence, separate regions of a running process. There
are two advantages for keeping text and data separate: protection and sharing. If
text and data were in the same region, the system could not prevent a process from
overwriting its instructions, because it would not know which addresses contain
instructions and which contain data. But if text and data are in separate regions,
the kernel can set up hardware protection mechanisms to prevent processes from
overwriting their text space. If a process mistakenly attempts to overwrite its text
space, it incurs a protection fault that typically results in termination of the
process.

#include <signal.h>
main()
{
int i, *ip;
extern (), sigcatch();

ip = (int *)f; /* assign ip to address of function f */
for i=0; i <20; i++)
signal(i, sigcatch);

ip=1; / attempt to overwrite address of f */
printf("after assign to ip\n");
f0;
)
f0
{
}
sigcatch(n)
int n;

{
printf("caught sig %d\n", n);
exit(1);

Figure 7.22. Example of Program Overwriting its Text

For example, the program in Figure 7.22 assigns the pointer ip to the address of
the function f and then arranges to catch all signals. If the program is compiled so
that text and data are in separate regions, the process executing the program incurs
a protection fault when it attempts to write the contents of ip, because it is writing
its write-protected text region. The kernel sends a SIGBUS signal to the process on

1.7 INVOKING OTHER PROGRAMS 223

an AT&T 3B20 computer, although other implementations may send other signals.
The process catches the signal and exits without executing the print statement in
main. However, if the program were compiled so that the program text and data
were part of one region (the data region), the kernel would not realize that a
process was overwriting the address of the function f. The address of f contains the
value 1! The process executes the print statement in main but executes an illegal
instruction when it calls /. The kernel sends it a SIGILL signal, and the process
exits.

Having instructions and data in separate regions makes it easier to protect
against addressing errors. Early versions of the UNIX system allowed text and
data to be in the same region, however, because of process size limitations imposed
by PDP machines: Programs were smaller and required fewer “segmentation”
registers if text and data occupied the same region. Current versions of the system
do not have such stringent size limitations on processes, and future compilers will
not support the option to load text and data in one region.

The second advantage of having separate regions for text and data is to allow
sharing of regions. If a process cannot write its text region, its text does not change
from the time the kernel loads it from the executable file. If several processes
execute a file they can, therefore, share one text region, saving memory. Thus,
when the kernel allocates a text region for a process in exec, it checks if the
executable file allows its text to be shared, indicated by its magic number. If so, it
follows algorithm xalloc to find an existing region for the file text or to assign a
new one (see Figure 7.23).

In xalloc, the kernel searches the active region list for the file’s text region,
identifying it as the one whose inode pointer matches the inode of the executable
file. If no such region exists, the kernel allocates a new region (algorithm
allocreg), attaches it to the process (algorithm attachreg), loads it into memory
(algorithm loadreg), and changes its protection to read-only. The latter step
causes a memory protection fault if a process attempts to write the text region. If,
in searching the active region list, the kernel locates a region that contains the file
text, it makes sure that the region is loaded into memory (it sleeps otherwise) and
attaches it to the process. The kernel unlocks the region at the conclusion of xalloc
and decrements the region count later, when it executes detachreg during exit or
exec. Traditional implementations of the system contain a text fable that the
kernel manipulates in the way just described for text regions. The set of text
regions can thus be viewed as a modern version of the old text table.

Recall that when allocating a region for the first time in allocreg (Section
6.5.2), the kernel increments the reference count of the inode associated with the
region, after it had incremented the reference count in namei (invoking iget) at the
beginning of exec. Because the kernel decrements the reference count once in iput
at the end of exec, the inode reference count of a (shared text) file being executed
is at least 1: Therefore, if a process unlinks the file, its contents remain intact.
The kernel no longer needs the file after loading it into memory, but it needs the
pointer to the in-core inode in the region table to identify the file that corresponds

224 PROCESS CONTROL

algorithm xalloc /* allocate and initialize text region */
input: inode of executable file
output: none
{
if (executable file does not have separate text region)
return;
if (text region associated with text of inode)

/* text region already exists...attach to it */
lock region;
while (contents of region not ready yet)
{
/* manipulation of reference count prevents total
* removal of the region.
*/
increment region reference count;
unlock region;
sleep (event contents of region ready);
lock region;
decrement region reference count;
)
attach region to process (algorithm attachreg);
unlock region;
return;
)
/* no such text region exists---create one */
allocate text region (algorithm allocreg); /* region is locked */
if (inode mode has sticky bit set)
turn on region sticky flag;
attach region to virtual address indicated by inode file header
(algorithm attachreg);
if (file specially formatted for paging system)
/* Chapter 9 discusses this case */
else /* not formatted for paging system */
read file text into region (algorithm loadreg);
change region protection in per process region table to read only;
unlock region;

Figure 7.23. Algorithm for Allocation of Text Regions

to the region. If the reference count were to drop to 0, the kernel could reallocate
the in-core inode to another file, compromising the meaning of the inode pointer in
the region table: If a user were to exec the new file, the kernel would find the text
region of the old file by mistake. The kernel avoids this problem by incrementing
the inode reference count in allocreg, preventing reassignment of the in-core inode.

1.7 INVOKING OTHER PROGRAMS 225

When the process detaches the text region during exit or exec, the lernel
decrements the inode reference count an extra time in freereg, unless the inode has
the sticky-bit mode set, as will be seen.

Inode Table Region Table

possible scenario
if /bin/date reference

text region
count could bf_o- - ==~ “for /bin/who

in-core inode ———"
for /bin/date

text region

pointer 10 =T=¢. /bin/date

in-core inode

Figure 7.24. Relationship of Inode Table and Region Table for Shared Text

For example, reconsider the exec of “/bin/date” in Figure 7.21, and assume
that the file has separate text and data sections. The first time a process executes
“/bin/date”, the kernel allocates a region table entry for the text (Figure 7.24) and
leaves the inode reference count at 1 (after the exec completes). When
“/bin/date” exits, the kernel invokes detachreg and freereg, decrementing the
inode reference count to 0. However, if the kernel had not incremented the inode
reference count for “/bin/date” the first time it was execed, its reference count
would be 0 and the inode would be on the free list while the process was running.
Suppose another process execs the file “/bin/who”, and the kernel allocates the in-
core inode previously used for */bin/date” to *“/bin/who”. The kernel would search
the region table for the inode for “/bin/who” but find the inode for “/bin/date”
instead. Thinking that the region contains the text for */bin/who”, it would
execute the wrong program. Consequently, the inode reference count for running,
shared text files is at least 1, so that the kernel cannot reallocate the inode.

The capability to share text regions allows the kernel to decrease the startup
time of an execed program by using the sticky-bit. System administrators can set
the sticky-bit file mode with the chmod system call (and command) for frequently
used executable files. When a process executes a file that has its sticky-bit set, the
kernel does not release the memory allocated for text when it later detaches the
region during exit or exec, even if the region reference count drops to 0. The
kernel leaves the text region intact with inode reference count 1, even though it is
no longer attached to any processes. When another process execs the file, it finds
the region table entry for the file text. The process startup time is small, because it
does not have to read the text from the file system: If the text is still in memory,
the kernel does not do any 170 for the text; if the kernel has swapped the text to a

226 PROCESS CONTROL

swap device, it is faster to load the text from a swap device than from the file
system, as will be seen in Chapter 9.
The kernel removes the entries for sticky-bit text regions in the following cases:

1. If a process opens the file for writing, the write operations will change the
contents of the file, invalidating the contents of the region.

2. If a process changes the permission modes cf the file (chmod) such that the
sticky-bit is no longer set, the file should not remain in the region table.

3. If a process unlinks the file, no process will be able to exec it any more

because the file has no entry in the file system; hence no new processes will

access the file’s region table entry. Because there is no need for the text
region, the kernel can remove it to free some resources.

4. If a process unmounts the file system, the file is no longer accessible and no
processes can exec it, so the logic of the previous case applies.

5. If the kernel runs out of space on the swap device, it attempts to free
available space by freeing sticky-bit regions that are currently unused.
Although other processes may need the text region soon, the kernel has more
immediate needs. ’

The sticky text region must be removed in the first two cases because it no longer
reflects the current state of the file. The kernel removes the sticky entries in the
last three cases because it is pragmatic to do so. Of course, the kernel frees the
region only if no processes currently use it (its reference count is 0); otherwise, the
system calls open, unlink, and umount (cases 1, 3 and 4) fail.

‘The scenario for exec is slightly more complicated if a process execs itself. If a
user types

sh séript

the shell forks and the child process execs the shell and executes the commands in
the file “script”. If a process execs itself and allows sharing of its text region, the
kernel must avoid deadlocks over the inode and region locks. That is, the kernel
cannot lock the “old” text region, hold the lock, and then attempt to lock the
“new” text region, because the old and new regions are one region. Instead, the
kernel simply leaves the old text region attached to the process, since it will be
reused anyway.

Processes usually invoke exec after fork; the child process thus copies the parent
address space during the fork, discards it during the exec, and executes a different
program image than the parent process. Would it not be more natural to combine
the two system calls into one to invoke a program and run it as a new process?
Ritchie surmises that fork and exec exist as separate system calls because, when
designing the UNIX system, he and Thompson were able to add the Sfork system
call without having to change much code in the existing kernel (see page 1584 of
[Ritchie 84al). But separation of the fork and exec system calls is functionally
important too, because the processes can manipulate their standard input and
standard output file descriptors independently to set up pipes more elegantly than if

17 INVOKING OTHER PROGRAMS 227

the two system calls were combined. The example of the shell in Section 7.8
highlights this feature. :

7.6 THE USER ID OF A PROCESS

The kernel associates two user IDs with a process, independent of the process ID
the real user ID and the effective user ID or setuid (set user ID). The real user ID
identifies the user who is responsible for the running process. The effective user ID
is used to assign ownership of newly created files, to check file access permissions,
and to check permission to send signals to processes via the kill system call. The
kernel allows a process to change its effective user ID when it execs a setuid
program or when it invokes the setuid system call explicitly.

A setuid program is an executable file that has the setuid bit set in its
permission mode field. When a process execs a setuid program, the kernel sets the
effective user ID fields in the process table and u area to the owner ID of the file.
To distinguisi: the two fields, let us call the ficld in the process table the saved user
ID. An example illustrates the difference between the two fields.

The syntax for the setuid system call is

setuid (uid)

where uid is the new user ID, and its result depends on the current value of the
effective user ID. If the effective user ID of the calling process is superuser, the
kernel resets the real and effective user ID fields in the process table and u area to
uid. If the effective user ID of the calling process is not superuser, the kernel
resets the effective user ID in the u area tc wid if uid has the value of the real user
ID or if it has the value of the saved user ID. Otherwise, the system call returns
an error. Generally, a process inherits its real and effective user IDs from its
parent during the fork system call and maintains their values across exec system
calls. .

The program in Figure 7.25 demonstrates the setuid system call. Suppose the
executable file produced by compiling the program has owner “maury” (user ID
8319), its setuid bit is on, and all users have permission to execute it. Further,
assume that users “mjb” (user ID 5088) and “maury” own the files of their
respective names, and that both files have read-only permission for their owners.
User “mjb” sees the following output when executing the program:

uid 5088 euid 8319

fdmjb —1 fdmaury 3

after setuid (5088): uid 5088 euid 5088
fdmjb 4 fdmayry —1

after setuid(8319): uid 5088 euid 8319

The system calls getuid and geteuid return the real aﬁd éﬂ"ecti;/e user IDs of the
process, 5088 and 8319 respectively for user “mjb”. Therefore, the process cannot
open file “mjb”, because its effective user ID (8319) does not have read permission

228 PROCESS CONTROL

##include <fentlh>
main(

{
int uid, euid, fdmjb, fdmaury;

uid = getuidQ; /* get real UID */
euid = geteuid(); /* get effective UID */
printf(“‘uid %d euid %d\n”, uid, euid);

fdmjb = open(“mjb”, O RDONLY);
fdmaury = open(“maury”, O RDONLY);
printf(“fdmjb %d fdmaury %d\n”, fdmjb, fdmaury);

setuid (uid);
printf(“after setuid(%d): uid %d euid %d\n", uid, getuid(), geteuid0);

fdmjb = open(“mjb”, O RDONLY);
fdmaury = open(“maury”, O_RDONLY);
printf(“fdmjb %d fdmaury %d\n”, fdmjb, fdmaury);

setuid (euid);
printf(“after setuid(%d): uid %d euid %d\n”; euid, getuid(), geteuid();

Figure 7.25. Example of Execution of Setuid Program

for the file, but the process can open file “maury”. After calling setuid to reset the
effective user ID of the process to the rtal user ID (“mjb”), the second print
statement prints values 5088 and 5088, the ufer ID of “mjb”. Now the process can
open the file “mjb”, because its effective user ID has read permission on the file,
but the process cannot open file “maury”. Finally, after calling setuid to reset the
effective user ID to the saved jsetuid value of the program (8319), the third print
statement prints values 5088 and 8319 again. The last case shows that a process
can exec a setuid program and toggle ils gffective user ID between its real user ID
and its execed setuid. .
User “maury” sees the following output when executing the program:

uid 8319 euid 8319

fdmjb —1 fdmaury 3

after setuid(8319): uid 8319 euid 8319
fdmjb —1 fdmaury 4

after setuid(8319): uid 8319 euid 8319

The real and effective user IDs are always 8319: the process can never open file
“mjb”, but it can open file “maury”. The effective user ID stored in the u area is

1.7 THE USER ID OF A PROCESS 229

the result of the most recent setuid system call or the exec of a setuid program,; it
is solely responsible for determining file access permissions. The saved user ID in
the process table allows a process to reset its effective user ID to it by executing the
setuid system call, thus recalling its original, effective user ID.

The login program executed by users when logging into the system is a typical
program that calls the setuid system call. Login is setuid to root (superuser) and
therefore runs with effective user ID root. It queries the user for various
information such as name and password and, when satisfied, invokes the setuid
system call to set its real and effective user ID to that of the user trying to log in
(found in fields in the file “/etc/passwd”). Login finally execs the shell, which runs
with its real and effective user IDs set for the appropriate user.

The mkdir command. is a typical setuid program. Recall from Section 5.8 that
only a process with effective user ID superuser can create a directory. To allow
ordinary users the capability to create directories, the mkdir command is a setuid
program owned by root (superuser permission). When executing mkdir, the
process runs with superuser access rights, creates the directory for the user via
mknod, and then changes the owner and access permissions of the directory to that
of the real user.

7.7 CHANGING THE SIZE OF A PROCESS

A process may increase or decrease the size of its data region by using the brk
system call. The syntax for the brk system call is

brk(endds);

where endds becomes the value of the highest virtual address of the data region of
the process (called its break value). Alternatively, a user can call :

oldendds = sbrk (incremént};

where increment changes the current break value by the specified number of bytes,
and oldendds is the brdak value before the call. Sbrk is a C library routine that
calls brk. If the data space of the process increases as a result of the call, the
newly allocated data space is virtually contiguous to the old data space; that is, the
virtual address spage of the process extends continuously into the newly allocated
data space. The kernel chegks that the new process size is less than the system
maximum and that:the new data region does not overlap previously assigned virtual
address space (Figure 7.26). If all checks pass, the kernel invokes growreg to
allocate auxiliary memory (e.g., page tables) for the data region and increments the
process size field: On a swapping system, it also attempts to allocate memory for
the new space and clear its tontents to zero; if there is no room in memory, it
swaps the process'ouf fo get the new space (explained in detail in Chapter 9). If
the process is calling brk to free previously allocated space, the kernel releases the
memory; if the process accesses virtual addresses in pages that it had released,_it
incurs a memory fault.

230 PROCESS CONTROL

-algorithm brk
input: new break value
output: old break value

lock process data region;
if (region size increasing)
if (new region size is illegal)
{
unlock data region;
return(error);
}
change region size (algorithm growreg);
zero out addresses in new data space;
unlock process data region;

Figure 7.26. Algorithm for Brk

Figure 7.27 shows a program that uses brk and sample output when run on an
AT&T 3B20 computer. After arranging to catch segmentation violation signals by
calling signal, the process calls sbrk and prints out its initial break value. Then it
loops, incrementing a character pointer and writing its contents, until it attempts to
write an address beyond its data region, causing a segmentation violation signal.
Catching the signal, catcher calls sbrk to allocate another. 256 bytes in the data
region; the process continues from where it was interrupted in the loop, writing into
the newly acquired data space. When it loops beyond the data region again, the
entire procedure repeats. An interesting phenomenon occurs on machines whose
memory is allocated by pages, as on the 3B20. A page is the smallest unit of
memory that is protected by the hardware and so the hardware cannot detect when
a process writes addresses that are beyond its break value but still on a “semilegal”
page. This is shown by the output in Figure 7.27: the first sbrk call returns
140924, meaning that there are 388 bytes left on the page, which contain 2K bytes
on a 3B20. But the process will fault only when it addresses the next page, at
address 141312. Catcher adds 256 to the break value, making it 141180, still
below the address of the next page. Hence, the process immediately faults again,
printing the same address, 141312. After the next sbrk, the kernel allocates a new
page of memory, so the process can address another 2K bytes, to 143360, even
‘though the break value is not that high. When it faults, it will call sbrk 8 times
until it can continue. Thus, a process can sometimes cheat beyond its official break
value, although it is poor programming style.
~ The kernel automatically extends the size of the user stack when it overflows,
following an algorithm similar to that for brk. A process originally contains
enough (user) stack space to hold the exec parameters, but it overflows its initial
stack area as it pushes data onto the stack during execution. When it overflows its

1.7 CHANGING THE SIZE OF A PROCESS 231

#include <signal.h>
char *cp;
int calino;

mainQ

{
char *sbrk(;
extern catcher();

signal (SIGSEGYV, catcher);
cp = sbrk(0);
printf("original brk value %u\n", cp);
for ()
*cpt+ = 1;
}

catcher(signo)
int signo;
{

callno++;

printf ("caught sig %d %dth call at addr %u\n", signo, callno, cp);
sbrk(256);

signal (SIGSEGYV, catcher);

original brk value 140924
caught sig 11 1th call at addr 141312
caught sig 11 2th call at addr 141312
caught sig 11 3th call at addr 143360
. . . (same address printed out to 10th call)
caught sig 11 10th call at addr 143360
caught sig 11 11th call at addr 145408
... (same address printed out to 18th call)
caught sig 11 18th call at addr 145408
caught sig 11 19th call at addr 145408

Figure 7.27. Use of Brk and Sample Output

stack, the machine incurs a memory fault, because the process is attempting to
access a location outside its address space. The kernel determines that the reason
for the memory fault was because of stack overflow by comparing the value of the
(faulted) stack pointer to the size of the stack region. The kernel allocates new
space for the stack region exactly as it allocates space for brk, above. When it

232 PROCESS CONTROL

/* read command line until “end of file” */
while (read(stdin, buffer, numchars))

/* parse command line */
if (/* command line contains & */)
amper = |;
else
amper = 0;
/* for commands not part of the shell command language */
if (fork(Q) == 0)
{

/* redirection of 10? */
if (/* redirect output */)
{
fd = creat(newfile, fmask);
close(stdout);
dup(fd);
close(fd);
/* stdout is now redirected */
)
if (/* piping */)
(

pipe(fildes);

Figure 7.28. Main Loop of the Shell

returns from the interrupt, the process has the necessary stack space to continue.

7.8 THE SHELL

This chapter has covered enough material to explain how the shell works. The
shell is more complex than described here, but the process relationships are
illustrative of the real program. Figure 7.28 shows the main loop of the shell and
demonstrates asynchronous execution, redirection of output, and pipes.

The shell reads a command line from its standard input and interprets it
according to a fixed set of rules. The standard input and standard output file
descriptors for the login shell are usually the terminal on which the user logged in,
as will be seen in Chapter 10. If the shell recognizes the input string as a built-in
command (for example, commands cd, for, while and others), it executes the
command internally without creating new processes; otherwise, it assumes the
command is the name of an executable file.

7.7 THE SHELL 233

if (fork() == 0)
{
/* first component of command line */
close(stdout);
dup(fildes[1]);
close(fildes[1]);
close(fildes[0]);
/* stdout now goes to pipe */
/* child process does command */
execlp(commandl, commandl, 0);
}
/* 2nd command component of command line */
close(stdin);
dup(fildes[0]);
close(fildes[0]);
close(fildes[1]);
/* standard input now comes from pipe */
)
execve(command2, command?2, 0);
}
/* parent continues over here...
* waits for child to exit if required
*/
if (amper == 0)
retid = wait(&status);

Figure 7.28. Main Loop of the Shell (continued)

The simplest command lines contain a program name and some parameters,
such as

who
grep —n include *.c
Is —1

The shell forks and creates a child process, which execs the program that the user
specified on the command line. The parent process, the shell that the user is using,
waits until the child process exits from the command and then loops back to read
the next command.

To run a process asynchronously (in the background), as in

nroff —mm bigdocument &

the shell sets an internal variable amper when it parses the ampersand character.
If it finds the variable set at the end of the loop, it does not execute wait but
immediately restarts the loop and reads the next command line.

234 PROCESS CONTROL

The figure shows that the child process has access to a copy of ,tile shell
command line after the fork. To redirect standard output to a file, as in

nroff —mm bigdocument > output

the child creats the output file specified on the command line; if the creat fails (for
creating a file in a directory with wrong permissions, for example), the child would
exit immediately. But if the creat succeeds, the child closes its previous standard
output file and dups the file descriptor of the new output file. The standard output
file descriptor now refers to the redirected output file. The child process closes the
file descriptor obtained from creat to conserve file descriptors for the execed
program. The shell redirects standard input and standard error files in a similar
way.

wait
exit
read

write

Figure 7.29. Relationship of Processes for Is —1 | we

The code shows how the shell could handle a command line with a single pipe,
as in

Is —1| we

After the parent process forks and creates a child process, the child creates a pipe.
The child process then forks; it and its child each handle one component of the
command line. The grandchild process created by the second fork executes the first
command component (Is): It writes to the pipe, so it closes its standard output file
descriptor, dups the pipe write descriptor, and closes the original pipe write
descriptor since it is unnecessary. The parent (wc) of the last child process (Is) is
the child of the original shell process (see Figure 7.29). This process (wc) closes
its standard input file and dups the pipe read descriptor, causing it to become the
standard input file descriptor. It then closes the original pipe read descriptor since
it no longer needs it, and execs the second command component of the original
command line. The two processes that execute the command line execute

N THE SHELL 235

asynchronously, and the output of one process goes to the input of the other
process. The parent shell meanwhile waits for its child process (wc) to exit, then
proceeds as usual: The entire command line completes when we exits. The shell
loops and reads the next command.

7.9 SYSTEM BOOT AND THE INIT PROCESS

To initialize a system from an inactive state, an administrator goes through a
“bootstrap” sequence: The administrator “boots” the system. Boot procedures
vary according to machine type, but the goal is common to all machines: to get a
copy of the operating system into machine memory and to start executing it. This
is usually done in a series of stages; hence the name bootstrap. The administrator
may set switches on the computer console to specify the address of a special hard-
coded bootstrap program ur just push a single button that instructs the machine to
load a bootstrap program from its microcode. This program may consist of only a
few instructions that instruct the machine to execute another program. On UNIX
systems, the bootstrap procedure eventually reads the boot block (block 0) of a
disk, and loads it into memory. The program contained in the boot block loads the
kernel from the file system (from the file “/unix”, for example, or another name
specified by an administrator). After the kernel is loaded in memory, the boot
program transfers control to the start address of the kernel, and the kernel starts
running (algorithm start, Figure 7.30).

The kernel initializes its internal data structures. For instance, it constructs the
linked lists of free buffers and inodes, constructs hash queues for buffers and inodes,
initializes region structures, page table entries, and so on. After completing the
initialization phase, it mounts the root file system onto root (“/) and fashions the
environment for process 0, creating a u area, initializing slot 0 in the process table
and making root the current directory of process 0, among other things.

When the environment of process O is set up, the system is running as process 0.
Process 0 forks, invoking the fork algorithm directly from the kernel, because it is
executing in kernel mode. The new process, process 1, running in kernel mode,
creates its user-level context by allocating a data region and attaching it to its
address space. It grows the region to its proper size and copies code (described
shortly) from the kernel address space to the new region: This code now forms the
user-level context of process 1. Process 1 then sets up the saved user register
context, “returns” from kernel to user mode, and executes the code it had just
copied from the kernel. Process 1 is a user-level process.as opposed to process 0,
which is a kernel-level process that executes in kernel mode. The text for process 1,
copied from the kernel, consists of a call to the exec system call to execute the
program “/etc/init”. Process 1 calls exec and executes the program in the normal
fashion. Process 1 is commonly called init because it is responsible for initialization
of new processes. :

Why does the kernel copy the code for the exec system call to the user address
space of process 1?7 It could invoke an internal version of exec directly from the

236 PROCESS CONTROL

"algorithm start /* system startup procedure */
input: none
output: none

initialize all kernel data structures;
pseudo-mount of root;
hand-craft environment of process 0;
fork process 1:
{
/* process 1 in here */
allocate region;
attach region to init address space;
grow region to accommodate code about to copy in;
copy code from kernel space to init user space to exec init;
change mode: return from kernel to user mode;
/* init never gets here---as result of above change mode,
* init exec’s /etc/init and becomes a "normal® user process
* with respect to invocation of system calls
*/
}
/* proc 0 continues here */
fork kernel processes;
/* process 0 invokes the swapper to manage the allocation of
* process address space to main memory and the swap devices.
* This is an infinite loop; process 0 usually sleeps in the
* loop unless there is work for it to do.
*/
execute code for swapper algorithm;

Figure 7.30. Algorithm for Booting the System

kernel, but that would be more complicated than the implementation just described.
To follow the latter procedure, exec would have to parse file names in kernel space,
not just in user space, as in the current implementation. Such generality, needed
only for init, would complicate the exec code and slow its performance in more
common cases.

The init process (Figure 7.31) is a process dispatcher, spawning processes that
allow users to log in to the system, among others. Init reads the file *“/etc/inittab”
for instructions about which processes to spawn. The file “/etc/inittab” contains
lines that contain an “id,” a state identifier (single user, multi-user, etc.), an
“action” (see exercise 7.43), and a program specification (see Figure 7.32). Init
reads the file and, if the state in which it was invoked matches the state identifier
of a line, creates a process that executes the given program specification. For
example, when invoking init for the multi-user state (state 2), init typically spawns

1.7

SYSTEM BOOT AND THE INIT PROCESS

input: none
output: none

algorithm init /* init process, process 1 of the system */

fd = open(*/etc/injttab", O_RDONLY);
while (line_read(fd, buffer))
{
/* read every line of file */
if (invoked state != buffer state)
continue; /* loop back to while */
/* state matched */
if (fork(Q == 0)
{
execl("process specified in buffer”);
exitQ;
}
/* init process does not wait */
/* loop back to while */
}

while ((id = wait((int *) 0)) !=-1)

{
/* check here if a spawned child died;
* consider respawning it */
/* otherwise, just continue */

Figure 7.31. Algorithm for Init

Format: identifier, state, action, process specification
Fields separated by colons.
Comment at end of line preceded by "#’

co::respawn:/etc/getty console console

Console in machine room
46:2:respawn:/etc/getty -t 60 tty46 4800H # comments here

Figure 7.32. Sample Inittab File

237

238 PROCESS CONTROL

getty processes to monitor the terminal lines configured on a system. When a user
successfully logs in, getry goes through a login procedure and execs a login shell,
described in Chapter 10. Meanwhile, init executes the wait system call, monitoring
the death of its child processes and the death of processes “orphaned” by exiting
parents.

Processes in the UNIX system are either user processes, daemon processes, or
kernel processes. Most processes on typical systems are ;user processes, associated
with users at a terminal. Daemon processes are net.associated with any users but
do system-wide functions, such as administration and control of networks, execution
of time-dependent activities, line printer spooling, and so on. Init may spawn
daemon processes that exist throughout the lifetime of the system or, on occasion,
users may spawn them. They are like user processes in that they run at user mode
and make system calls to access system services.

Kernel processes execute only in kernel mode. Process 0 spawns kernel
processes, such as the page-reclaiming process vhand, and then becomes the
swapper process. Kernel processes are similar to daemon processes in that they
provide system-wide services, but they have greater control over their execution
priorities since their code is part of the kernel. They can access kernel algorithms
and data structures directly without the use of system calls, so they are extremely
powcerful. However, they are not as flexible as daemon processes, because the
kernel must be recompiled to change them.

7.10 SUMMARY

This chapter has discussed the system calls that manipulate the process context and
control its execution. The fork system call creates a new process by duplicating all
the regions attached to the parent process. The tricky part of the fork
implementation is to initialize the saved register context of the child process, so that
it starts executing inside the fork system call and recognizes that it is the child
process. All processes terminate in a call to the exit system call, which detaches
the regions of a process and sends a “death of child” signal to its parent. A parent
process can synchronize execution with the termination of a child process with the
wait system call. The exec system call allows a process to invoke other programs,
overlaying its address space with the contents of an executable file. The kernel
detaches the old process regions and allocates new regions, corresponding to the
executable file. Shared-text files and use of the sticky-bit mode improve memory
utilization and the startup time of execed programs. The system allows ordinary
users to execute with the privileges of other users, possibly superuser, with setuid
programs and use of the setuid system call. The brk system call allows a process to
change the size of its data region. Processes control their reaction to signals with
the signal system call. When they catch a signal, the kernel changes the user stack
and the user saved register context to set up the call to the signal handler.
Processes can send signals with the kill system call, and they can control receipt of
signals designated for particular process groups through the setpgrp system call.

1.7 SUMMARY 239

The shell and irit use standard system calls to provide sophisticated functions
normally found in the kernel of other systems. The shell uses the system calls to
interpret user commands, redirecting standard input, standard output and standard
error, spawning processes, setting up pipes between spawned processes,
synchronizing execution with child processes, and recording the exit status of
commands. Similarly, init spawns various processes, particularly to control
terminal execution. When such a process exits, init can respawn a new process for
the same function, if so specified in the file “/etc/inittab”.

7.11 EXERCISES

1. Run the program in Figure 7.33 at the terminal. Redirect its standard output to a file
and compare the results.

main()
{
printf(“‘hello\n™);
if (fork() == 0)
printf(“world\n");
}

Figure 7.33. Fork and the Standard 1/0 Package

2. Describe what happens in the program in Figure 7.34 and compare to the results of
Figure 7.4.

3. Reconsider the program in Figure 7.5, where two processes exchange messages through
a pair of pipes. What happens if they try to exchange messages through one pipe?

4. In general, could there be any loss of information if a process receives several instances
of a signal before it has a chance to react? {Consider a process that counts th:
number of interrupt signals it receives.) Should this problem be fixed?

5. Describe an implementation of the kill system call.

6. The program in Figure 7.35 catches “death of child” signals, and like many signal-
catcher functions, resets the signal catcher. What happens in the program?

7. When a process receives certain signals and does not handle them, the kernel dumps
an image of the process as it existed when it received the signal. The kernel creates a
file called “core” in the current directory of the process and copies the u area, text,
data, and stack regions into the file. A user can subsequently investigate the dumped
image of the process with standard debugging tools. Describe an algorithm the kernel
could follow to create a core file. What should the algorithm do if a file *“core”
already exists in the current directory? What should the kernel do if multiple
processes dump “core” files in one directory?

8. Reconsider the program in Figure 7.12 where a process bombards another process with
signals that the second process catches. Discuss what would happen if the signal-
handling algorithm were changed in cither of the following two ways:

240 PROCESS CONTROL

#include <fcntl.h>
int fdrd, fdwt;
charc;

main(argc, argv)
int argc;
char *argv[];

if (argc 1= 3)

exit(1);
fork();

if (fdrd = open(argv{1]}, O RDONLY)) == —1)

exit(1);
if (((fdwt = creat(argv([2], 0666)) == — 1) &&
((fdwt = open(argv[2], 0 WRONLY)) == —1))
exit(1);
rdwrt();
)
rdwrt()
{
for (;;)
{
if (read(fdrd, &c, 1)!'=1)
return;
write(fdwt, &c, 1);
}
}

Figure 7.34. Program where Parent and Child Do Not Share File Access

¢ The kernel does not change the signal-handling function until the user explicitly
requests to do so;
e The kernel causes the process to ignore the signal until the user calls signal again.
9. Redesign the algorithm for handling signals such that the kernel automatically
arranges for a process to ignore further instances of a signal it is handling until the
signal handler returns. How can the kernel find out when the signal handler, running
in user mode, returns? This specification is closer to the treatment of signals on BSD
systems.

* 10. If a process receives a signal while sleeping at an interruptible priority in a system call,
it longjmps out of the system call. The kernel arranges for the process to execute its
signal handler, if specified; when the process returns from the signal handler, it
appears to have returned from the system call with an error indication (interrupted)
on System V. The BSD system automatically restarts the system call for the process.
How can this feature be implemented?

7.7

11.

12.

*13.

*14.

15.

EXERCISES 241

#include <signal.h>
main(
(

extern catcher();

signal (SIGCLD, catcher);
if (fork() == 0)

exitQ;
/* pause suspends execution until receipt of a signal */
pause();
}
catcher()
{
printf(““parent caught sig\n”);
signal (SIGCLD, catcher);
1

Figure 7.35. Catching Death of Child Signalis

The conventional implementation of the mkdir command invokes the mknod system
call to create the directory node, then calls the /ink system call twice to link the
directory entries “.” and “..” to the directory node and its parent directory. Without
the three operations, the directory will not be in the correct format. What happens if
mkdir receives a signal while executing? What if the signal is SIGKILL, which
cannot be caught? Reconsider this problem if the system were to implement a mkdir
system call.

A process checks for signals when it enters or leaves the sleep state (if it sleeps at an
interruptible priority) and when it returns to user mode from the kernel after
completion of a system call or after handling an interrupt. Why does the process not
have to check for signals when entering the system for execution of a system call?
Suppose a process is about to return to user mode after executing a system call and it
finds thai it has no outstanding signals. Immediately after checking, the kernel
handles an interrupt and sends the process a signal. (For instance, a user hits the
“break” key.) What does the process do when the kernel returns from the interrupt?
If several signals are sent to a process simultaneously, the kernel handles them in the
order that they are listed in the manual. Given the three possibilities for responding to
receipt of a signal — catching the signals, exiting after dumping a core image of the
process, and exiting without dumping a core image of the process — is there a better
order for handling simultaneous signals? For example, if a process receives a quit
signal (causes a core dump) and an interrupt signal (no core dump), does it make
more sense to handle the quit signal or the interrup signal first?

Implement a new system cdll

newpgrp(pid, ngrp);

that resets the process group of another process, identified by process ID pid to ngrp.
Discuss possible uses and dangers of such a system call.

242

16.

17.

19.

20.

21.

22.

23.

24.

PROCESS CONTROL

Comment on the following statement: A process can sleep on any event in the wait
algorithm, and the system would work correctly.
Consider implementation of a new system call,

nowait (pid);

where the process ID pid identifies a child of the process issuing the call. When
issuing the call, the process informs the kernel that it will never wait for the child
process to exit, so that the kernel can immediately clean up the child process slot when
the child dies. How could the kernel implement such a solution? Discuss the merits
of such a system call and compare it to the use of “death of child” signals.

The C loader automatically includes a startup routine that calls the function main in
1he user program. If the user program does not call exit internally, the startup routine
calls exit for the user after the return from main. What would happen if the call to
exit were missing from the startup routine (because of a bug in the loader) when the
process returns from main?

What information does wait find when the child process invokes exit without a
parameter? That is, the child process calls exit() instead of exit(n). If a programmer
consistently invokes exit without a parameter, how predictable is the value that wait
examines? Demonstrate and prove your claim.

Describe what happens when a process executing the program in Figure 7.36 execs
itself. How does the kernel avoid deadlocks over locked inodes?

main(argc, argv)
int argg;
char *argv(];

execl(argv[0], argv[0], 0);

Figure 7.36. An Interesting Program

By convention, the first argument to exec is the (last component of the) file name that
the process executes. What happens when a user executes the program in Figure 7.37.
What happens if “a.out” 1s the load module produced by compiling the program in
Figure 7.36?

Suppose the C language supported a new data type “read-only,” such that a process
incurs a protection fault whenever it attempts to write “‘read-cnly” data. Describe an
implementation. (Hint: Compare to shared text) What algorithms in the kernel
change? What other objects could one consider for implementation as regions?
Describe how the algorithms for open, chmod, unlink, and unmount change for
sticky-bit files. For example, what should the kernel do with a sticky-bit file when the
file is unlinked?

The superuser is the only user who has permission to write the password file
“/etc/passwd”, preventing malicious or errant users from corrupting its contents. The
passwd program allows users to change their password entry, but it must make sure
that they do not change other people’s entries. How should it work?

77 EXERCISES 243

main{)
if (forkQ == 0)

execl(*a.out”, 0);
printf(“exec failed\n”);

)

Figure 7.37. An Unconventional Program

* 25. Explain the security problem that exists if a setuid program is not write-protected.
26. Execute the following sequence of shell commands, where the file “a.out” is an
executable file.

chmod 4777 a.out
chown root a.out

The chmod command turns on the setuid bit (the 4 in 4777), and the owner “root” is
conventionally the superuser. Can execution of such a sequence allow a simple breach
of security?

27. What happens if you run the program in Figure 7.38? Why?

main()

{
char *endpt;
char *sbrkQ);
int brkO;

endpt = sbrk(0);
printf(“‘endpt = %ud after sbrk\n”, (int) endpt);

while (endpt——)

if (brk(endpt) == —1)

{
printf(“brk of %ud failed\n”, endpt);
exit(;

Figure 7.38. A Tight Squeeze

28. The library routine malloc allocates more data space to a process by invoking the brk
system call, and the library routine free releases memory previously allocated by
malloc. The syntax for the calls is

29.

30.

31

32.

PROCESS CONTROL

ptr = malloc(size);
free(ptr);

where size is an unsigned integer representing the number of bytes to allocate, and ptr
is a character pointer that points to the newly acquired space. When used as a
parameter for free, ptr must have been previously returned by malloc. Implement the
library routines.

What happens when running the program in Figure 7.39? Compare to the results
predicted by the system manual.

main()

int i;
char *cp;
extern char *sbrk();

cp = sbrk(10);
for i=0; i<10; i++)
*cpt+ = ‘};' +i;
sbrk(-10);
cp = sbrk(10);
for i=0;, i< 10; i++)
printf(“char %d = '%c’\n”, i, *cp++);

Figure 7.39. A Simple Sbrk Example

When the shell creates a new process to, execute a command, how does it know that
the file is executable? If it is exechtable, how does it distinguish between a shell script
and a file produced by a compilation? What is the correct sequence for checking the
above cases? .

The shell symbol “> > appends output to the specified file: for example,

run > > outfile

creats the file “outfile” if it does not already exist and writes the file, or it opens the
file and writes after the existing data. Write code to implement this.

'

main()

{

exit(0);

Figure 7.40. Truth Program

The shell tests the exir return from a process, treating a 0 value as true and a non-0
value as false (note the inconsistency with C). Suppose the name of the executable
file corresponding to the program in Figure 7.40 is truth. Describe what happens:

17

33.

34.

35.

* 36.

37.

38.

39.

40.

41.

42.

EXERCISES 245

when the shell executes the following loop. Enhance the sample shell code to handls
this case.

while truth
do

truth &
done

Why must the shell create the processes to handle the two command components of a
pipeline in the indicated order (Figure 7.29)7

Make the sample code for the shell loop more general in how it handles pipes. That is,
allow it to handle an arbitrary number of pipes on the command line.

The environment variable PATH describes the ordered set of directories that the shell
should search for executable files. The library functions execlp and execvp prepend
directories listed in PATH to file name arguments that do not begin with a slash
character. Implement these functions.

A superuser should set up the PATH environment variable so that the shell does not
search for executable files in the current directory. What security problem exists if it
attempis to execute files in the current directory?

How does the shell handle the cd (change directory) command? For the command
line

cd pathname &

what does the shell do?

When the user types a “delete” or “break” key at the terminal, the terminal driver
sends an interrupt signal tc all processes in the process group of the login shell. The
user intends to stop processes spawned by the shell but probably does not want to log
off. How should the shell loop in Figure 7.28 be enhanced?

The user can type the command

nohup command_line

to disallow réceipt of hangup signals and quit signals in the processes generated for
“command line.” How should the shell loop in Figure 7.28 handle this?
Consider the sequence of shell commands

nroff —mm bigfilel > biglout &
nroff —mm bigfile2 > big2out

and reexamine the sheli loop shown in Figure 7.28. What would happen if the first
nroff finished executing before the second one? How should the code for the shell loop
be modified to handle this case correctly?

When executing untested programs from the shell, a common error message printed by
the shell is “Bus error — core dumped.” The program apparently did something
illegal; how does the shell know that it should print an error message?

Only one init ptocess can execute as process 1 on a system. However, a system
administrator can change the state of the system by invoking init. For example, the
system comes up in single user state when i. is booted, meaning that the system
console is active but user terminals are not. A system administrator types the
command

43.

PROCESS CONTROL
init 2

at the console to change the state of init to state 2 (multi-user). The console sheli
JSorks and execs init. What should happen in the system, given that only one fnit
process should be active?

The format of entries in the file “/etc/inittab” allows specification of an aetion
associated with each generated process. For cxample, the action typically associated
with getty is respawn, meaning that init should recreate the process if it dies.
Practically, this means that init will spawn another getty process when a user logs off,
allowing another user to access the now inoperative terminal line. How can init
implement the fespawn action?

Several kernel algorithms require a search of the process table. The search time can
be improved by use of parent, child, and sibling pointers: The parent pointer points to
the parent of the process, the child pointer points to any ¢hild process, and the sibling
pointer points to another process with the same parent. A process finds all its children
by following its child pointer and then following the sibling pointers (loops are illegal).

What algorithms benefit from this implementation? What algorithms must remain the
same?

PROCESS SCHEDULING
AND TIME

On a time sharing system, the kernel allocates the CPU to a process for a period of
time called a time slice or time quantum, preempts the process and schedules
another one when the time slice expires, and reschedules the process to continue
execution at a later time. The scheduler function on the UNIX system uses
relative time of execution as a parameter to determine which process to schedule
next. Every active process has a scheduling priority; the kernel switches context to
that of the process with the highest priority when it does a context switch. The
kernel recalculates the priority of the running process when it returns from kernel
mode to user mode, and it periodically readjusts the priority of every “ready-to-
run” process in user mode.

Some user processes also have a need to know about time: For example, the
time command prints the time it took for another command to execute, and the
date command prints the date and time of day. Various time-related system calls
allow processes to set or retrieve kernel time values or to ascertain the amount of
process CPU usage. The system keeps time with a hardware clock that interrupts
the CPU at a fixed, hardware-dependent rate, typically between 50 and 100 times a
second. Each occurrence of a clock interrupt is called a clock tick. This chapter
explores time related activities on the UNIX system, considering process
scheduling, system calls for time, and the functions of the clock interrupt handler.

247

248 PROCESS SCHEDULING AND TIME

8.1 PROCESS SCHEDULING

The scheduler on the UNIX system belongs to the general class of operating system
schedulers known as round robin with multilevel feedback, meaning that the kernel
allocates the CPU to a process for a time quantum, preempts a process that exceeds
its time quantum, and feeds it back into one of several priority queues. A process
may need many iterations through the “feedback loop™ before it finishes. When
the kernel does a context switch and restores the context of a process, the process
resumes execution from the point where it had been suspended.

algorithm schedule_process
input: none
output: none

{

while (no process picked to execute)

for (every process on run queue)
pick highest priority process that is loaded in memory;
if (no process eligible to execute)
idle the machine;
/* interrupt takes machine out of idle state */
}
remove chosen process from run queue;
switch context to that of chosen process, resume its execution;

Figure 8.1. Algorithm for Process Scheduling

8.1.1 Algorithm

At the conclusion of a context switch, the kernel executes the algorithm to schedule
a process (Figure 8.1), selecting the highest priority process from those in the states
“ready to ryn and loaded in memory” and “preempted.” It makes no sense to
select a process if it is not loaded in memory, since it cannot execute until it is
swapped in. If several processes tie for highest priority, the kernel picks the one
that has been “ready to run” for the longest time, following a round robin
scheduling policy. If there are no processes eligible for execution, the processor
idles until the next interrupt, which will happen in at most one clock tick; after
handling that iriterrupt, the kernel again attempts to schedule a process to run.

8.1 PROCESS SCHEDULING 249

8.1.2 Scheduling Parameters

Each process table entry contains a priority field for process scheduling. The
priority of a process in user mode is a function of its recent CPU usage, with
processes getting a lower priority if they have recently used the CPU. The range of
process priorities can be partitioned into two classes (sec Figure 8.2): user
priorities and kernel priorities. Each class contains several priority values, and each
priority has a queue of processes logically associated with it. Processes with user-
level priorities were preempted on their return from the kernel to user mode, and
processes with kernel-level priorities achieved them in the sleep algorithm. User-
level priorities are below a threshold value, and kernel-level priorities are above the
threshold value. Kernel-level priorities are further subdivided: Processes with low
kernel priority wake up on receipt of a signal, but processes with high kernel
priority continue to sleep (see Section 7.2.1).

Figure 8.2 shows the threshold priority between user priorities and kernel
priorities as the double line between priorities “waiting for child exit” and “user
level 0.7 The priorities called “swapper,” “waiting for disk 1/0,” “waiting for
buffer,” and “waiting for inode” are high, noninterruptible system priorities, with 1,
3, 2, and 1 processes queued on the respective priority level, and the priorities
called “waiting for tty input,” “waiting for tty output,” and “waiting for child exit”
are low, interruptible system priorities with 4, 0, and 2 processes queued,
respectively. The. figure distinguishes user priorities, calling them “‘user level 0,”
“user level 1,” to “user level n,”! containing 0, 4, and 1 processes, respectively.

The kernel calculates the priority of a process in specific process states.

e It assigns priority to a process about to go to sleep, correlating a fixed, priority
value with the reason for sleeping. The priority does not depend on the run-
time characteristics of the process (I/0 bound or CPU bound), but instead is a
constant value that is hard-coded for each call to sleep, dependent on the reason
the process is sleeping. Processes that sleep in lower-level algorithms tend to
cause more system bottlenecks the longer they are inactive; hence they receive a
higher priority than processes that would cause fewer system bottlenecks. For
instance, a process sleeping and waiting for the completion of disk 1/0 has a
higher priority than a process waiting for a free buffer for several reasons:
First, the process waiting for completion of disk 1/0 already has a buffer; when
it wakes up, there is a chance that it will do enough processing to release the
buffer and, possibly, other resources. The more resources it frees, the better the
chances are that other processes will not block waiting for resources. The
system will have fewer context switches and, consequently, process response

-

The highest priority value on the system is 0. Thus, user level 0 has higher priority than user level 1,
and so on.

Kernel Mode
Priorities

Not

Interruptible

Interruptible

v
Thre?hold Priorit
A

User Mode
Priorities

PROCESS SCHEDULING AND TIME

Priority Levels

Processes

Swapper

Waiting for Disk 10

ofe

)
—/

Waiting for Buffer

—0O0——0

Waiting for Inode

Waiting for TTY Input

O

ofe

O

Waiting for TTY Output

Waiting for Child Exit

i

User Level 0

User Level 1

O
O

|
I
I

User Level n

—0

Figure 8.2. Range of Process Priorities

time and system throughput are better. Second, a process waiting for a free
buffer may be waiting for a buffer held by the process waiting for completion of
1/0. When the I/0 completes, both processes wake up because they sleep on
the same address. If the process waiting for the buffer were to run first, it
would sleep again anyway until the other process frees the buffer; hence its

priority is lower.

e The kernel adjusts the priority of a process that returns from kernel mode to
user mode. The process may have previously entered the sleep state, changing
its priority to a kernel-level priority that must be lowered to a user-level priority
when returning to user mode. Also, the kernel penalizes the executing process
in fairness to other processes, since it had just used valuable kernel resources.

